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Unsteady flows in pipes with finite curvature
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Motivated by the study of blood flow in a curved artery, we consider fluid flow through
a curved pipe of uniform curvature, δ, driven by a prescribed oscillatory axial pressure
gradient. The curved pipe has finite (as opposed to asymptotically small) curvature,
and we determine the effects of both the centrifugal and Coriolis forces on the flow.
In addition to δ, the flow is parameterized by the Dean number, D, the Womersley
number, α, and a secondary streaming Reynolds number, Rs . Asymptotic solutions
are developed for the case when δ � 1, α � 1 and the magnitude of the axial pressure
gradient is small, using regular perturbation techniques. For intermediate values
of the governing parameters, a pseudospectral code is used to obtain numerical
solutions. For flows driven by a sinusoidal pressure gradient (D =0), we identify three
distinct classes of stable solutions: 2π-periodic symmetric, 2π-periodic asymmetric,
and asymmetric solutions that are either quasi-periodic, or periodic with period 2πk

for k ∈ �. The transition between solutions is dependent on the value of δ; thus
pipes with finite curvature may exhibit qualitatively different transitions between the
solution classes as the governing parameters are varied from those of curved pipes
with asymptotically small curvature. When α � 1, matched asymptotic expansions
are used to simplify the system, and the resulting equations are solved analytically
for Rs � 1, δ � 1 and numerically for larger parameter values. We then determine
the effect of a non-zero steady component of the pressure gradient (D �= 0), and
show that, for certain parameter values, when D is above a critical value the periodic
asymmetric solutions regain spatial symmetry. Finally, we show that the effects of
finite curvature can lead to substantial quantitative differences in the wall shear stress
distribution and discuss briefly the physiological implications of the results for blood
flow in arteries.

1. Introduction
Fluid flow in a curved pipe has many applications to physiological fluid flows and

industrial fluid dynamics. Our main motivation is blood flow in arteries. Athero-
sclerosis is the most common arterial disease, and it is now widely accepted that
the spatial distribution of atherosclerotic plaques, which characterize the disease, is
correlated with the distribution of arterial wall shear stress (WSS) (Caro, FitzGerald
& Schroter 1971). In particular, plaques tend to develop in regions of low mean WSS
and regions where the WSS changes direction in the course of the cardiac cycle.
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Atherosclerosis leads to ischaemic symptoms through the gradual restriction of blood
flow as the plaques occupy progressively more of the arterial lumen. An additional
health risk is the vulnerability of the plaque to rupture or erosion, which can, in turn,
give rise to thromboses. Emboli may then break off and be carried downstream and
block smaller vessels.

To provide insight into the sites at which plaques develop, many studies have
considered fluid flow in an arterial model. Two main approaches are adopted. The
first approach aims to replicate a realistic artery from patient data and study the fluid
flows using full CFD simulations (see for example Steinman (2002) and references
therein). This approach is patient-specific and reveals the exact quantitative nature of
the flow properties. A complementary approach is to idealize the problem, for example
by considering a simplified arterial geometry and form of the driving pressure, and
significantly more physical insight into the underlying mechanisms can be obtained
than by computational simulation of the full system alone. We adopt this approach
here.

We model the artery as a pipe with constant circular cross-section of radius a,
having a centreline lying on an arc of a circle of radius R. The dimensionless
curvature ratio of the pipe is δ = a/R. The blood is modelled as a Newtonian viscous
fluid driven by an oscillatory axial pressure gradient of the form −P0 − K cos(t),
where −P0 is the steady component, K is the amplitude of the sinusoidal component,
and time, t , has been non-dimensionalized by T , where 2πT is the period of the
sinusoidal component of the pressure gradient. Throughout this paper we use the
term oscillatory to refer to pressure gradients of the form −P0 −K cos t and sinusoidal
to refer to pressure gradients of the form −K cos t . In addition to the curvature, δ,
the flow is characterized by three dimensionless parameters: (i) the Dean number,
D =4Re

√
2δ, where Re is the Reynolds number based on the maximum axial velocity

of the flow that would be driven by the steady component of the pressure gradient
in a straight pipe of radius a; (ii) the Womersley parameter, α =(a2/νT )1/2, where
ν is the kinematic viscosity of the fluid, and α2 is equal to the ratio of the time
scale for viscous diffusion of momentum across the pipe to the period of the pressure
gradient oscillations; and (iii) the secondary streaming Reynolds number Rs , which
is a Reynolds number based on the scale of the secondary velocity generated (the
velocity in the plane of cross-section of the pipe), when the flow is driven by a
sinusoidal pressure gradient.

In this paper we consider fully developed flows driven by oscillatory and sinusoidal
pressure gradients. For flows driven by steady pressure gradients see Pedley (1980),
Berger, Talbot & Yao (1983), Ito (1987), Siggers & Waters (2005) and references
therein. The majority of previous studies of flows driven by oscillatory pressure
gradients in fixed curved tubes have considered only weakly curved pipes of circular
cross-section. This corresponds to taking the limit δ → 0 after having rescaled the
governing equations so that only the leading-order centrifugal effects of curvature are
retained.

Fully developed flow driven by a sinusoidal pressure gradient in a weakly curved
pipe has been considered by a number of authors (Stuart 1966; Lyne 1971). The flow
depends on Rs and α, and, for sufficiently large values of α, the flow consists of a
Stokes boundary layer surrounding an inviscid core flow. Within the Stokes layer,
secondary motions are generated by the nonlinear centrifugal force terms. These
secondary motions have a non-zero mean, which does not tend to zero at the edge
of the boundary layer, and thus drives a (two-vortex) steady secondary streaming
flow in the core of the pipe. This steady streaming is parameterized by Rs , and its



Unsteady flows in pipes with finite curvature 135

direction is opposite to that for steady Dean flow. For small Rs , a series solution
can be found, and for larger Rs , the solution may be found numerically (Haddon
1982; van Meerveld & Waters 2001). For asymptotically large Rs , Lyne (1971) and
Stuart (1966) predicted that additional boundary layers will form around the edges
and across the centreline of the pipe, both of thickness O(aR−1/2

s ); this prediction
was confirmed numerically in van Meerveld & Waters (2001).

Mullin & Greated (1980) also performed a theoretical and experimental
investigation of fully developed flows in weakly curved pipes, driven by a sinusoidal
pressure gradient, and found a series solution for small values of an amplitude
parameter (which is proportional to the square of the amplitude of the applied
pressure gradient) in terms of a Hankel transform. The series solution is valid for
all values of α. In the low-frequency limit, α � 1, a further expansion was used and
closed-form solutions were presented, which correspond to quasi-steady Dean flow.
At intermediate values of α, the steady secondary flow streamline pattern has a
four-vortex structure.

Fully developed flows driven by an oscillatory pressure gradient in a weakly curved
pipe have also been investigated (Smith 1975; Blennerhassett 1976). Smith (1975)
examined the nature of the flow when the parameters D or α are asymptotically
small or large (and Rs =O(1)). The analysis revealed a number of pulsatile motions,
and in certain cases interactions between steady boundary layers and Stokes layers
were involved. Blennerhassett (1976) performed both numerical and asymptotic
analyses and obtained the key result that a sinusoidal pressure gradient, composed of
oscillations of more than one frequency, can result in the generation of a mean axial
flow along the pipe.

The small curvature limit leads to a considerable simplification of the governing
equations. However, many arteries have a significant curvature (e.g. the aortic arch
has curvature ratio approximately 1/4, Chang & Tarbell 1985). There have been a
number of numerical studies of flows in pipes with finite curvature (Chang & Tarbell
1985; Hamakiotes & Berger 1990; Sudo, Sumida & Yamane 1992; Tada, Oshima
& Yamane 1996). Although some of these studies varied δ between the different
simulations, none of them commented on the effects of varying δ. Furthermore, the
studies all imposed symmetry across the centreplane of the pipe (the plane containing
the centreline of the pipe), so that asymmetric solutions were not permitted. Periodic
flows in curved pipes have also been investigated experimentally (Lin & Tarbell 1980;
Sudo et al. 1992; Swanson, Stalp & Donnelly 1993; Chandran, Yearwood & Wieting
1979). While the above studies all considered curved pipes with zero torsion (so
that the pipe centreline remained in the plane), flow in helical pipes has also been
considered. In particular, Zabielski & Mestel (1998a, b) considered both steady and
unsteady fully developed flows in helically symmetric pipes, and retained the effects
of finite curvature.

In this paper we consider fully developed flow through a curved pipe of uniform
curvature, δ, driven by a prescribed axial pressure gradient. The curved pipe has
finite (as opposed to asymptotically small) curvature; however, we are restricted to
small (but finite) curvature, since a long entry length is required to ensure fully
developed flow, which is not possible for larger values of δ. We consider values
of δ between 0 and 0.3, and determine the effects of both the centrifugal and
Coriolis forces on the flow. Furthermore, we do not assume symmetry in the pipe
centreplane (Winters 1987). In § 2, we give the governing equations. The problem
is governed by the four dimensionless parameters δ, D, α and Rs . In § 3, we use
regular perturbation techniques to find a series solution to the governing equations
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in the limit in which both the steady component (characterized by D) and amplitude
of the sinusoidal component (characterized by R1/2

s α3) of the pressure gradient are
asymptotically small, and additionally δ � 1 and α � 1. In § 4, we consider larger
parameter values, and present highlights of our numerical solutions in the case
of a sinusoidal pressure gradient (D = 0). A pseudospectral code is used to solve
the governing equations, the numerical method is described in detail in § 4.1 and
numerical solutions are presented in § 4.2. Three distinct classes of stable solutions
are found: symmetric and 2π-periodic, asymmetric and 2π-periodic, and asymmetric
solutions that are either quasi-periodic, or periodic with period 2kπ for k ∈ �. The
transition between solutions is dependent on the value of δ; we show that pipes with
finite curvature may exhibit qualitatively different transitions between the solution
classes as the governing parameters are varied compared to weakly curved pipes.
The numerical results show that as α increases, the flow consists of an inviscid core
surrounded by a viscous Stokes boundary layer. In § 4.3, we consider asymptotically
large values of α, and generalize the analysis of Lyne (1971) and Stuart (1966) to
curved pipes with finite curvature using matched asymptotic expansions. The core
flow is governed by Rs and δ; for small Rs and δ, we find a series solution using
regular perturbation techniques, and we also present numerical solutions for larger
values of these parameters. In § 5, we consider flows driven by an oscillatory pressure
gradient (D �= 0) and present examples of the typical flows found. Here again, we
drop the assumption that the governing dimensionless parameters are asymptotically
small, and the governing equations are solved using the numerical method described
in § 4.1. In particular, we show an example of an asymmetric solution found in § 4.2
regaining spatial symmetry as D is increased. In § 6, we determine the behaviour
of the WSS distribution as δ increases for cases of both sinusoidal and oscillatory
pressure gradients. Finally, in § 7 we discuss briefly the physiological implications of
our results.

2. Governing equations and parameters
The artery is modelled as a rigid-walled pipe of uniform circular cross-section

with radius a. The centreline of the pipe is assumed to lie on the arc of a circle
of radius R (so that torsion effects are neglected) and we define the curvature ratio
δ = a/R ∈ [0, 1]. The blood is modelled as a homogeneous incompressible viscous
Newtonian fluid of density ρ and kinematic viscosity ν.

A curvilinear coordinate system (ar, θ, as) is chosen, where (ar, θ) are polar
coordinates in the plane of cross-section of the pipe, and as is the distance along the
centreline, as shown in figure 1. The unit vectors (er , eθ , es) denote the coordinate
directions. The pipe wall is at r =1, the velocity components are Uu =U (u, v, w/

√
2δ)

and ρU 2p is the pressure, where U = ν/a is the velocity scale (Truesdell & Adler
1970). Note that the axial velocity scale ensures that the centrifugal force terms in the
governing equations are formally of the same order as the viscous and inertial terms
in the limit δ → 0. Time is given by T t where 2πT is the period of the sinusoidal
component of the pressure gradient.

The flow is driven by a prescribed dimensional oscillatory axial pressure gradient
of the form −P0 − K cos t, where −P0 is the steady component and K the amplitude
of the sinusoidal component, respectively.

We consider only fully developed flow by neglecting derivatives of the dependent
variables with respect to s. The governing equations are then (Pedley 1980):
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Figure 1. The curvilinear coordinate system.
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where α =(a2/νT )1/2 is the Womersley parameter, and D and Rs are the Dean number
and secondary streaming Reynolds number, which are defined as follows:

D =
√

2δ
P0a

3

ρν2
, Rs =

δK2T 3

νρ2
. (2.5a, b)

Note that in (2.5a), P0a
3/(ρν2) is also equal to 4Re, where Re is the Reynolds number

based on the maximum axial velocity of the flow that would be driven by the steady
component of the pressure gradient in a straight pipe of radius a. The function h(r, θ)
is given by 1 + δr cos θ , and h(r, θ) �s is the distance travelled along the pipe by a
particle with fixed r and θ as s increases by �s. Equations (2.1)–(2.4) must be solved
subject to the no-slip boundary condition u = 0 at r = 1.

It is convenient to introduce a streamfunction ψ via

u =
1

hr

∂(hψ)

∂θ
, v = −1

h

∂(hψ)

∂r
, (2.6)

so that (2.1) is solved automatically. Eliminating the pressure from (2.2) and (2.3), we
obtain the following equation
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h
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Hw = L2ψ, (2.7)
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The term −h−1wHw in (2.7) represents the centrifugal force term arising from the
curvature. The axial momentum equation (2.4) becomes
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1
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3
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The term h−1δwHψ represents an inertial term due to the curvature of the pipe; it
may be shown that this correction term is half the usual Coriolis force (Siggers &
Waters 2005).

The governing equations are now (2.7) and (2.9), together with no-slip boundary
conditions, ψ = ψr = w = 0, at the outer boundary (r = 1). Note that in the limit δ → 0,
the third term in (2.9) disappears, while the centrifugal force term in (2.7) is retained.
By considering finite values of δ, we will determine the effects of both the centrifugal
and Coriolis forces on the flow.

One of the main goals will be to calculate the axial and azimuthal WSS (denoted
τs and τθ , respectively). These are defined as
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respectively. To obtain the dimensional WSS, the above expressions must be multiplied
by μν/a2. It will also be useful to define the axial component of vorticity, which is
given by
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3. Oscillatory pressure gradient – asymptotic solution
Here we develop an asymptotic solution for (2.7) and (2.9) in the small-curvature

regime, i.e. δ � 1. We expand w =
∑∞

n= 0 δnwn, ψ =
∑∞

n= 0 δnψn, and the leading-order
equations are

α2 ∂∇2ψ0

∂t
+

1

r
J(∇2ψ0, ψ0) − w0Hw0 = ∇4ψ0, (3.1)

α2 ∂w0

∂t
+

1

r
J(w0, ψ0) = F + ∇2w0, (3.2)

where F (t) = D+
√

2Rsα
3 cos t is the forcing term and ∇2 is the usual two-dimensional

Laplacian in polar coordinates. We proceed to solve these equations in the limit
|F (t)| � 1 and α � 1.

Inspection of (3.1) and (3.2) reveals that a consistent balance is obtained when
w0 is O(F ) and ψ0 is O(F 2). Writing w0 =Fw00 + w′

0 and ψ0 = F 2ψ00 + ψ ′
0, where

|w′
0| � |Fw00| and |ψ ′

0| � |F 2ψ00|, equation (3.2) yields a balance between the driving
pressure gradient and the viscous terms, i.e. 0 = 1+∇2w00, whilst in (3.1), the centrifugal
term drives the flow through the viscous term, i.e. −w00Hw00 = ∇4ψ00. These equations
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Figure 2. Contour plots of components of w and ψ . (a) represents the Poiseuille flow solution
for a straight pipe and (b) represents the leading contribution to ψ . (c), (d ), (g) and (h) show the
corrections to w due to inertial effects; (c) and (g) arise from the time-dependent inertia term,
whilst (d ) and (h) come from the nonlinear inertial terms. (e) and (i ) show the finite-curvature
corrections to the axial velocity arising from balancing the viscous term with the pressure
gradient. (f ) and (j ) show the correction to the streamfunction arising from the curvature.
Shaded areas indicate regions where the function is positive, ‘I’ denotes the inside of the pipe
bend (θ = π) and ‘O’ denotes the outside (θ =0), and the contour spacings are given underneath
the figures in parentheses.

must be solved subject to the usual no-slip boundary conditions on the tube wall.
The solutions are

w00 = 1
4
(1 − r2), ψ00 =

1

210 × 32
r(1 − r2)2(4 − r2) sin θ.

Contour plots of w00 and ψ00 are shown in figures 2(a) and 2(b). Note that in
all the cross-sectional figures in this paper ‘I’ denotes the inside of the pipe bend
(θ = π), ‘O’ denotes the outside (θ =0) and shaded areas indicate regions where the
function is positive. Contours are plotted at multiples of the numbers in parentheses
underneath the figures. For the axial velocity plots, the zero contour corresponds to
the boundary, and in the streamfunction and vorticity plots, the zero contour marks
the separation between positive value (shading) and negative value (no shading)
contours. The leading-order axial flow is the Poiseuille flow that would be obtained
in a straight pipe, whilst the leading-order secondary flow is symmetric and consists
of two Dean vortices, with flow from the inside of the bend to the outside, and back
around the walls, agreeing with both the classical Dean flow and Mullin & Greated’s
observations (Dean 1928; Mullin & Greated 1980).
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We now consider the corrections to the O(δ0) solutions above arising from the
inertial terms. Substituting w0 =Fw00 + w′

0, ψ0 = F 2ψ00 + ψ ′
0 into (3.2), we obtain

∇2w′
0 = α2 dF

dt
w00 +

F 3

r
J (w00, ψ00) + · · · . (3.3)

The two terms on the right-hand side of (3.3) are of order α2dF/dt and F 3,
respectively. Thus, depending on the relative sizes of D, Rs and α, there are three
possibilities for the size of w′

0.
(i) If R1/2

s α5 � max(D3, R3/2
s α9), then the right-hand side of (3.3) is dominated by

the first term. Writing the next correction to w0 as α2(dF/dt)w01, w01 is given by the
solution of ∇2w01 = w00, which is

w01 = − 1
64

(1 − r2)(3 − r2).

(ii) If R1/2
s α5 � max(D3, R3/2

s α9) then the right-hand side of (3.3) is dominated by
the second term, and the next correction to w0 is F 3w02, given by the solution of
∇2w02 = r−1J(w00, ψ00), which is

w02 =
1

215 × 32 × 5
r(1 − r2)(19 − 21r2 + 9r4 − r6) cos θ.

(iii) If R1/2
s α5 ∼ max(D3, R3/2

s α9), then both terms contribute at leading order to the
right-hand side of (3.3) and so the next correction to w0 is equal to α2(dF/dt)w01 +
F 3w02.
Diagrams of w01 and w02 are given in figures 2(c) and 2(d ), respectively. The spatially-
symmetric term, w01, is driven by the time-dependent inertia term, and leads to
contributions to the axial velocity that lag behind the oscillations of w00 by π/2. The
asymmetric term w02 is driven by the nonlinear inertial terms, and gives contributions
that attain their maximum values at the same times as w00; an additional effect of
this term is to move the position where the maximal axial velocity is attained towards
the outside of the bend.

We now consider equations (2.7) and (2.9) at O(δ):
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where L1 is the O(δ)-component of L, given by
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r
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.

As before, writing w1 = Fw10 + w′
1, ψ1 =F 2ψ10 + ψ ′

1, where |w′
1| � |Fw10| and

|ψ ′
1| � |F 2ψ10|, equations (3.4) and (3.5) yield at leading order

∇4ψ10 = −(w10 − rw00 cos θ)Hw00 − w00Hw10 − ∇2L1ψ00 − L1∇2ψ00,

∇2w10 = rF cos θ − L1w00,
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which have solutions

w10 = − 3
16

r(1 − r2) cos θ, (3.6)

ψ10 = − 1

212 × 32 × 5
r2(1 − r2)2(56 − 17r2) sin 2θ. (3.7)

These are shown in figures 2(e) and 2(f ) respectively. Inspecting figure 2(e), we see
that as the curvature is increased, the point where the maximal axial velocity is
attained moves towards the inside of the pipe bend. This reduces the asymmetry
induced by the term F 3w02 (thus to this order, the degree of asymmetry in the axial
velocity profile depends on the relative sizes of the terms F 3w02 and δFw10). From
figure 2(f ), the effect of ψ10 is to move the centre of the Dean vortices towards the
inside of the bend (see also Siggers & Waters 2005).

As at O(δ0), the three cases (i), (ii) and (iii) apply, depending on the relative sizes
of D, Rs and α.

(i) w′
1 is dominated by α2(dF/dt)w11, which satisfies

w10 = ∇2w11 + L1w01,

and has solution

w11 =
1

27 × 3
r(1 − r2)(11 − 4r2) cos θ,

shown in figure 2(g).
(ii) w′

1 is dominated by F 3w12, where
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r
(w00, ψ10 + rψ00 cos θ) − J (w00, ψ00) cos θ + w00Hψ00
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which has solution
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− 5r2(463 − 613r2 + 296r4 − 40r6) cos 2θ),

shown in figure 2(h).
(iii) w′

1 has contributions of the same order from both α2(dF/dt)w11 and F 3w12.
From the equations at O(δ2), we may work out series expansions for w2 and ψ2 in

a similar way, finding that w2 = Fw20 + w′
2 and ψ2 = F 2ψ20 + ψ ′

2, where |w′
2| � |w20|

and |ψ ′
2| � |ψ20|, and

w20 =
1

128
(1 − r2)(−3 + 11r2 + 10r2 cos 2θ),

ψ20 =
1

217 × 32 × 5
r(1 − r2)2(−(133 − 976r2 + 327r4) sin θ + 2r2(499 − 172r2) sin 3θ).

Plots of w20 and ψ20 are shown in figures 2(i ) and 2(j ).
Thus we have shown that

w =

[
Fw00 + α2 dF

dt
w01 + F 3w02 + O

(
α4 d2F

dt2
, F 5

)]
+ δ

[
Fw10 + α2 dF

dt
w11

+ F 3w12 + O

(
α4 d2F

dt2
, F 5

)]
+ δ2

[
Fw20 + O

(
α2 dF

dt
, F 3

)]
+ O(δ3), (3.8)

and an analogous expression may be written for the streamfunction. Details of the
terms that may be retained and their ordering depends on the relative sizes of
the small quantities δ, α and F . For the sake of brevity we omit a full presentation
of the different cases here.
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The total dimensionless axial flow rate through the pipe is equal to∫ 2π

0

∫ 1

0

rw dr dθ = 2π

((
F

16
− α2

96

dF

dt
+ · · ·

)
+ δ

(
− 11F 3

216 × 33 × 5
+ · · ·

)

+ δ2

(
F

28 × 3
+ · · ·

)
+ O(δ3)

)
, (3.9)

where the · · · refer to higher-order terms in the expansions, and the time-averaged
axial flow rate is

2πD

((
1

16
+ · · ·

)
+ δ

(
−11(D2 + 3Rsα

6)

216 × 33 × 5
+ · · ·

)
+ δ2

(
1

28 × 3
+ · · ·

)
+ O(δ3)

)
.

(3.10)

Thus, as δ increases from zero, the time-averaged axial flow rate decreases, reaching
a minimum as δ approaches 11(D2 + 3Rsα

6)/(29 × 5 × 32).
The maximum axial velocity is(
F

4
− 3α2

64

dF

dt
+ · · ·

)
+ δ

(
− 581F 3

218 × 32 × 52
+ · · ·

)
+ δ2

(
3F

256
+ · · ·

)
+ O(δ3), (3.11)

which is attained at the point

r = |r | , θ =

{
0 + · · · if r � 0,

π + · · · if r < 0,
where r =

(
19F 2

214 × 32 × 5
+ · · ·

)

+ δ

(
−3

8
− 7α2

192

1

F

dF

dt
+ · · ·

)
+ O(δ2), (3.12)

where, owing to symmetry, for many parameter regimes the maximum is attained
exactly on the centreline θ = 0, π. As mentioned earlier, w10 and w02 move the
position of this maximum in opposite directions. For F 2 � δ, the term containing w02

dominates that containing w10, so the maximum is located towards the outside of the
bend; as δ increases, the maximum moves towards the inside. The maximum of the
streamfunction is

[(1.18 × 10−4F 2 + · · ·) + δ(· · ·) + δ2(1.43 × 10−5F 2 + · · ·))] + O(δ3), (3.13)

which is attained at the vortex centre

r = (0.43 + · · ·) + δ(· · ·) + δ2(0.06 + · · ·) + O(δ3), (3.14)

θ = (π/2 + · · ·) + δ(0.59 + · · ·) + O(δ2), (3.15)

where the numerical coefficients here have been expressed to two decimal places. This
indicates that the secondary-flow vortices also move towards the inside of the bend
of the pipe as δ increases.

The axial WSS is given by

τs =
1√
2δ

(
F

2
− α2

16

dF

dt
+

F 3 cos θ

213 × 5 × 3
+ · · ·

)
+

√
δ√
2

(
−3F cos θ

8
+

7α2 cos θ

192

dF

dt

− F 3(72 + 53 cos 2θ)

216 × 5 × 33
+ · · ·

)
+

δ3/2

√
2

(
F (4 + 5 cos 2θ)

32
+ · · ·

)
+ O(δ5/2). (3.16)

For δ � (D2 + 3Rsα
6)/(210 × 5 × 32), the time-averaged value of τs has maximum and

minimum values of
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D

2
√

2δ

(
1 ± D2 + 3Rsα

6

212 × 5 × 3
+ · · ·

)
+

√
δ√
2
D

(
∓3

8
− 25(D2 + 3Rsα

6)

216 × 33
+ · · ·

)

+
δ3/2

√
2

D

(
9

25
+ · · ·

)
+ O(δ5/2), (3.17)

attained at θ = 0 and θ = π, respectively. The maximum value of the azimuthal WSS
is attained at

θ =
(π

2
+ · · ·

)
+ δ

(
13

10
+ · · ·

)
+ O(δ2), (3.18)

and is equal to(
1

384
F 2 + · · ·

)
+ δ (· · ·) + δ2

(
1237

213 × 3 × 52
F 2 + · · ·

)
+ O(δ3). (3.19)

Finally, considering the accuracy of our series solution, we know from Dean (1928)
that when Rs = 0 these results should be reasonably accurate for D � 100. However,
the corresponding limiting values for δ, α and Rs are not as well known, and we shall
investigate the accuracy of these analytical results in later sections by comparison
with the numerical solutions.

4. Sinusoidal pressure gradient
We now consider flows driven by a sinusoidal (zero mean) pressure gradient. The

governing equations are given by (2.7) and (2.9) with D set to zero.

4.1. Numerical method

Since accurate determination of the time dependent solution is required, the time
stepping is done using the second-order backwards difference formula, which has
error O(dt2) where dt = 2π/N is the time step, and N is the number of time steps
per period. This approximates time derivatives at the (n + 1)th step by an expression
involving the quantity at the (n − 1)th, nth and (n + 1)th steps. For simplicity, we
replace the nonlinear terms from (2.7) and (2.9) at the (n+1)th step by a combination
of their values at the nth and (n−1)th steps that has error O(dt2). Thus (2.7) and (2.9)
may then be approximated by

A1ψ
n+1 = b1, A2w

n+1 = b2, (4.1)

where ψn+1 and wn+1 denote solutions at the (n + 1)th step, A1 and A2 are constant
linear differential spatial operators and b1 and b2 are nonlinear functions of ψn,
ψn−1, wn, wn−1 and their spatial derivatives.

Equations (4.1) are discretized spatially using a pseudospectral method in the
azimuthal direction and second-order central differencing in the radial direction. The
resulting algebraic equations are solved using the HSL sparse matrix routine MA38.†
The radial grid is defined by r0 = 0 <r1 <r2 < · · · <rnr −1 <rnr

= 1 and azimuthal
discretization is performed by approximating functions of θ as f (θ) =

∑nθ

j = −nθ
fje

ijθ ,

where nθ is some chosen truncation level, f0 ∈ � and fj = f−j ∈ � for j �= 0, where
overlines represent complex conjugates. The numerical approximations to ψ(rk, θ, n dt)
and w(rk, θ, n dt) at r = rk and θ are denoted by

∑
j ψn

kje
ijθ and

∑
j wn

kje
ijθ , respectively.

From the solution for ψ we can also evaluate the numerical approximation to the
axial vorticity, ξ (rk, θ, ndt), at r = rk and θ , which is denoted

∑
j ξ n

kje
ijθ .

† Obtainable from http://www.cse.clrc.ac.uk/nag/hsl/.
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The boundary layers are resolved by using a finer mesh in areas with steep
gradients in the variables. Care must be taken when evaluating derivatives at the
pipe wall and at the origin. To take finite differences of the variables at r = rnr −1, it
is necessary to introduce a fictitious grid point that lies outside the circular domain
at rnr+1 = 2 − rnr −1, and near the origin we introduce fictitious radial grid points at
r−1 = − r1 and r−2 = − r2. For more details see Siggers & Waters (2005).

In the following section we identify two types of time-dependent behaviour: periodic
with period 2kπ, k ∈ �; and quasi-periodic. We test for convergence to a time-periodic
solution with period 2π after m periods of simulation by requiring that the conditions

max
(k,j )∈S1

∣∣∣∣∣ξ
mN
kj − ξ

(m−1)N
kj

ξ
(m−1)N
kj

∣∣∣∣∣ < err1, max
(k,j )∈S2

∣∣∣∣∣w
mN
kj − w

(m−1)N
kj

w
(m−1)N
kj

∣∣∣∣∣ < err2,

hold, where the erri are chosen small positive constants and

S1 = {(k, j ) : 0 � k < nr, 0 � j � nθ , |ξn−1
kj | > ε1},

S2 = {(k, j ) : 0 � k < nr, 0 � j � nθ , |wn−1
kj | > ε2},

for chosen small constants ε1 and ε2. For 2kπ periodic solutions, we compare solutions
with time differences of 2kπ in the analogous manner. For quasi-periodic solutions, we
cannot determine convergence in this manner; however, we simulate the solution for
at least ten times the normal time for convergence, and we infer the quasi-periodicity
of the solutions from the bifurcation structure (see § 4.2.1).

The simulations were run using 110 mesh points in the radial direction: these were
spaced at intervals of 0.01 for 0 < r < 0.9, and at intervals of 0.005 in the boundary-
layer region corresponding to 0.9 <r < 1. We used 21 modes in the azimuthal direction.
We tested the accuracy by refining the radial mesh, increasing the number of azimuthal
modes and reducing the tolerance criteria. The code was also validated by comparison
of the numerical results with the asymptotic solutions found in § 3; see § 6.

4.2. Results

4.2.1. Bifurcation structure

All the solutions found in § 3 were both 2π-periodic and spatially symmetric in
the centreplane (θ = 0, π). In addition, the solution was unique. In our numerical
results with small and moderate values of Rs and α we also find 2π-periodic and
symmetric solutions, as expected. However, in other regions of parameter space, our
numerical results reveal parameter values where there are multiple solutions to the
governing equations. With α and δ fixed at 10 and 0.1, respectively, a sketch of the
proposed bifurcation structure consistent with the observations as Rs is varied is given
in figure 3. The vertical axis (not to scale) denotes the value of a solution property on
a Poincaré section at time intervals of 2π, e.g. values of the maximum axial velocity
at t = 2πk where k ∈ �. In the following discussion the term symmetric is used to
refer to solutions that are spatially symmetric in the centreplane (θ = 0, π). We have
identified three distinct classes of stable solution: periodic and symmetric (branch 1,
see e.g. figure 6), periodic and asymmetric (branch 2, see e.g. figure 8), and solutions
that are asymmetric and also either quasi-periodic, or periodic but having a period
2πk for k ∈ � (branch 3). Since branch 3 solutions are not in general 2π periodic,
the solution takes a range of values on the vertical axis in figure 3, as indicated by
the dotted ellipse: the upper and lower curves emerging from (B) are both part of the
same solution, and represent the envelope of the solutions. In figure 3, we use solid
curves to denote stable solutions and dashed curves to denote unstable solutions;
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(A)

Rs ≈ 116

(1) Periodic, symmetric

(B)(2)

(3)

Rs increasing

(C)

Rs ≈ 124

Rs ≈ 93

(2) Periodic, asymmetric

(3) Asymmetric: quasi-periodic or
periodic with period 2kπ, k ≥ 1

Figure 3. Sketch of proposed bifurcation diagram for α = 10 and δ = 0.1, showing the existence
of multiple branches of solutions. The vertical axis (not to scale) denotes the value (or range of
values) of a solution property on a Poincaré section at time intervals of 2π. Solid curves: stable
solutions; dashed curves: unstable solutions. Branch 3 solutions are not in general 2π-periodic,
and the solution takes a range of values on the vertical axis, as indicated by the dotted ellipse.

note that we are only able to find stable solutions with our numerical scheme, and
we infer the presence of unstable branches from our observations as Rs varies. We
obtain branch 1 solutions by solving the governing equations at a given (small) Rs

using the asymptotic solution obtained in § 3 as an initial condition. Increasing Rs

gradually, we can proceed along branch 1 to bifurcation point (A). Upon increasing
Rs further, we obtain solutions on either branch 3 or branch 2 (depending on the
value of Rs at which bifurcation (B) occurs). If, for example, we move onto branch 3
initially, we can obtain branch 2 solutions by further increasing Rs to travel through
bifurcation (B). Alternatively, if we obtain a branch 2 solution, we can find branch 3
solutions via a decrease in Rs .

At point (A), the branch 1 solutions lose stability via a bifurcation, as shown in
figure 3. From the numerical results, the transition is discontinuous and hysteretic,
meaning that (A) could be a subcritical pitchfork bifurcation (producing two unstable
branches related by a centreplane reflection), a saddle-node bifurcation (in which
branch 1 collides with an unstable branch of solutions and the two branches are
annihilated), or a global bifurcation. An analysis of the bifurcation at (A) would
require investigation of the behaviour of the eigenvalues on branch 1, and is beyond
the scope of this paper. Starting from a stable branch 2 solution, if we decrease Rs , the
solution will undergo a Hopf bifurcation (B) to produce a single branch of solutions
(branch 3). Upon decreasing Rs further, the branch 3 solutions will lose stability via
a saddle-node bifurcation (C), and a branch 1 solution will be seen.

The values of Rs at which bifurcations (A), (B), (C) occur as a function of the
curvature, δ, are given in figure 4 (again for α = 10). Bifurcation (C) always occurs at
a lower value of Rs than (B), but when δ � 0.07, (B) occurs at a lower value of Rs

than (A). Thus if δ < 0.07, then as Rs is increased, branch 1 solutions will undergo a
transition to branch 2 solutions. Conversely, if δ � 0.07, the branch 1 solution will
initially undergo a transition to a branch 3 solution when it loses stability, and will
undergo a further transition to branch 2 solutions upon raising Rs further. Thus the
transitions seen in the solution depend qualitatively upon the pipe curvature.

The frequency of the periodic branch 2 solutions is 1, whereas the frequency, ω,
associated with the Hopf bifurcation (B) is expected to vary continuously along the
curve (B) in figure 4. If ω = p/q is rational, then the branch 3 solution for Rs just
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Figure 4. Plot of the critical secondary streaming Reynolds number, Rs , at which the
bifurcations occur against δ. (B), Hopf; (C), saddle-node. Here, α = 10.

below (B) will be periodic with period 2πq; otherwise the branch 3 solution will be
quasi-periodic there. Thus in the parameter space just below curve (B) in figure 4, we
expect to see Arnol’d tongues and mode-locking (see Glendinning 1994 pp. 267–271).
If we move through a path in parameter space that crosses the curve (B) transversely
(e.g. keeping all parameters fixed except for Rs), then the solutions seen will typically
pass through an infinite sequence of Arnol’d tongues each of which corresponds to a
rational frequency pi/qi . The solution within the tongue is periodic, or mode locked,
with period 2πqi; between the tongues, the solution is quasi-periodic.

We have not investigated the effect of α on the intersection of curves labelled (B)
and (C) in figure 4. However, the behaviour illustrated for α = 10 in figure 4, namely
the curvature-dependent hysteresis to asymmetric solutions, and the finite ‘window’
of quasi-periodicity will persist, at least for values of α in a neighbourhood of α = 10.

4.2.2. Solutions at low and moderate values of α

We now discuss features of the solutions in more detail. A typical branch 1 solution
is illustrated in figure 5, which shows the streamlines and axial velocity profiles
for δ =0, Rs = 10 and α =10. The solutions are presented at eight equally spaced
times around the period. The top row of figures shows the secondary streamlines,
and the bottom row the axial velocity at the corresponding times (black represents
positive values and white represents negative values). During the first half-period, the
direction of the secondary flow is anticlockwise in the top half of the circular domain
and clockwise in the bottom half; the directions reverse in the second half-period.
The symmetric solutions also possess a temporal symmetry in which the solution is
translated forward by half a period and the sign of the axial velocity is reversed.

The dependence of branch 1 solutions on the curvature, δ, is shown in figure 6 for
Rs = 10, α = 1 and δ = 0, 0.1 and 0.3. In figures 6, 8, 9, 11, 15–19, solid, dotted and
dashed curves represent solutions with δ =0, 0.1, 0.3, respectively, and the shading
indicates regions where the solution with δ = 0 is positive, unless otherwise stated. The
streamlines, axial velocity and axial vorticity contours are shown at equally spaced
time points for the first half-period corresponding to t = 0, π/3, 2π/3. The qualitative
features of the solution are captured by the δ = 0 solution, and both the centre of the
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15.646 19.192 11.496 –2.934 –15.645 –19.192 –11.496 2.934

Figure 5. Streamlines and axial velocity plots for δ = 0, Rs = 10 and α = 10. The top row
shows the streamlines in the cross-section at eight equally spaced times around the period
(t = kπ/4, k = 1, 2, . . . , 8), whilst the second row shows the axial velocity at the corresponding
times (black represents positive values and white represents negative values). The numbers
underneath (which must be multiplied by 2π) give the total dimensionless axial flow rate (see
(3.9)).

ψ I
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Figure 6. Streamlines, axial velocity contours and axial vorticity contours for Rs =10 and
α = 1, each of which is shown at equally spaced time points for the first half-period
(t = 0, π/3, 2π/3, respectively). Solid curves, δ = 0; dotted curves, δ = 0.1; dashed curves,
δ = 0.3. The shading indicates regions where the solution with δ = 0 is positive. The figures in
parentheses underneath the plots give the spacing of the contour lines, and ‘I’ denotes θ = π
whilst ‘O’ denotes θ = 0.

vortex in the streamlines and the position at which the maximum of the axial velocity
occurs is advected towards the inside of the pipe bend as δ increases. Inspection of
(3.8) shows that the behaviour as δ increases, namely that the position of the maximum
moves towards the inside bend, can be explained in terms of the Fw10 term.



148 J. H. Siggers and S. L. Waters

54.268 66.938 40.442 –9.791 –54.268 –66.938 –40.442 9.791

Figure 7. Streamlines and axial velocity plots for δ = 0, Rs = 120 and α = 10. The top row
shows the streamlines in the cross-section at eight equally spaced times around the period
(t = kπ/4, k = 1, 2, . . . , 8), whilst the second row shows the axial velocity at the corresponding
times (black represents positive values and white represents negative values). The numbers
underneath (which must be multiplied by 2π) give the total flow rate (the integral of the axial
velocity).

Staying on branch 1, we see that, for larger values of Rs , the solution is qualitatively
similar to the solution in figure 6. For Rs = 300 and α = 1, for example, the maximum
values of ψ and ξ increase by a factor of approximately 30, whilst the maximum of
w increases by about

√
30 compared with the maximum values for Rs =10 and α =1.

This agrees with the predictions in § 3 that the axial velocity and streamfunction are
dominated by Fw00 and F 2ψ00, and are thus proportional to

√
Rs and Rs , respectively.

We now return to the solution pictured in figure 5, and investigate what happens
upon increasing Rs whilst keeping δ = 0, α = 10 fixed. Figure 4 indicates that for these
values of α and δ, bifurcation (B) occurs at a lower value of Rs than (A). Thus
as we increase Rs , the branch 1 solutions will lose stability to branch 2 solutions,
such as that shown in figure 7. As we increase Rs further, the two vortices in the
streamlines become more equal both in area and in terms of the maximum absolute
values attained by the streamfunction in each vortex, i.e. the solution actually becomes
closer to being symmetric. As mentioned previously, there are two sub-branches of
branch 2, related via a reflection in the centreplane, and figures 7 and 8 show the
solutions on the two different sub-branches. In the example shown in figure 8, the
qualitative features of the solution are captured by the δ = 0 solution.

Owing to their lack of 2π-periodicity, it is difficult to present a branch 3 solution
compactly in a diagram; additionally, at any given time they resemble the branch
2 solutions with similar parameter values. However, if we plot a solution property
(e.g. centreline axial velocity) against time, the quasi-periodic or multi-periodic nature
of the solution is revealed, see for example figure 10, which shows the centreline
velocity against time for several periods of the driving pressure gradient.

If instead we fix Rs = 300 and increase α from 1 to 10 (see figure 8), we also
see a transition from a branch 1 to a branch 2 solution. This happens suddenly,
suggesting that the transition is also discontinuous and hysteretic, and may therefore
be a continuous deformation of bifurcation (A), i.e. starting from a branch 2 solution
and reducing α, the value of α at which the branch 1 solution is seen is lower than
the value of α at which the branch 1 solution loses stability as α is increased.

4.2.3. Solutions at high values of α

We now consider the solutions for higher values of α. In this case, the solutions we
have found are all on branch 1. However, when α increases, it becomes increasingly
difficult to resolve solutions with higher values of Rs , and therefore we cannot rule out
the possible existence of asymmetric solution branches. At large values of α, we expect



Unsteady flows in pipes with finite curvature 149

(10) (10) (10)

(50) (50) (50)

(500) (500) (500)

ψ I I I

w

ξ

O O O

I I IO O O

I I IO O O

Figure 8. Streamlines, axial velocity contours and axial vorticity contours for Rs = 300,
α = 10 and δ = 0 and 0.1, shown at t = 0, π/3, 2π/3. Solid curves, δ =0; dotted curves, δ = 0.1.

the flow to consist of an inviscid core surrounded by a Stokes boundary layer (Stuart
1966; Lyne 1971). Figure 9 shows the solutions with α =20 and Rs = 10, and clearly
shows the formation of a boundary layer at r =1. The axial vorticity is almost constant
in the core in all cases, whilst the axial velocity is approximately constant in the core
for δ =0, whereas for δ = 0.3 it is approximately independent of the vertical coordinate.
For smaller α, the streamlines form two vortices filling the interior (e.g. at α = 1, in
figure 6), but in figure 9 where α = 20 and Rs = 10, a second vortex pair has formed
in the centre of the pipe. This second pair gradually expands as α increases until it
occupies the whole interior of the pipe, with the original pair of vortices now confined
to the boundary layer at r = 1. Figure 11 shows how the width of the boundary layer
decreases with α, indicating that the width is proportional to α−1 for large α.

The presence of the boundary layer at large values of α makes the solution costly
to find numerically. However, in the limit α → ∞, we can solve the boundary-layer
equations analytically. The boundary-layer analysis provides a boundary condition on
the core flow, which we will then solve using both analytical and numerical methods.

4.3. Asymptotic analysis for high-frequency sinusoidal flow

We now generalize the analysis of Stuart (1966) and Lyne (1971) to curved pipes with
finite curvature. We expand the dependent variables in powers of α−1 as follows

ψ = ψ0 + α−1ψ1 + α−2ψ2 + · · · , w = αw0 + w1 + α−1w2 + · · · . (4.2)
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Figure 9. Streamlines, axial velocity contours and axial vorticity contours for Rs = 10 and
α = 20, shown at t =0, π/3, 2π/3. The solutions are shown only for δ =0 and δ = 0.3 for
clarity and only half the cross-section is shown, since the solutions are symmetric. The graphs
underneath the contour plots show the behaviour of the solutions on θ = π/2 for ψ and ξ and
on the horizontal diameter for w. Solid curves, δ = 0; dashed curves, δ = 0.3.

Assuming that w|t =0 ≡ 0, by considering successive orders of magnitude in (2.7)
and (2.9), we obtain the following:

w0 =
1

h

√
2Rs sin t, w1 = 0, w2 = 0, (4.3)

L∂ψ0

∂t
= 0, L∂ψ1

∂t
= 0, L∂ψ2

∂t
+

1

r
J

(
Lψ0

h
, hψ0

)
= L2ψ0. (4.4a–c)
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Figure 10. Plot of axial velocity at r = 0 as a function of time. Here, δ = 0.1, α = 10 and
Rs = 117.
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Figure 11. Logarithmic plot of width of boundary layer (averaged over a period) as α
increases for Rs = 10 and δ = 0, 0.1 and 0.3. The boundary-layer width is based on the
streamfunction properties and is defined to be the distance from r = 1 of the point lying on
θ = π/2 where ψ passes through zero. The dash-dot-dot-dot line is proportional to α−1 for
comparison. Solid curve, δ = 0; dotted curve, δ = 0.1; dashed curve, δ = 0.3.

Note that in postulating these solutions we are ruling out the possibility of asymmetric
solutions. Assuming that there are no secular terms in time, i.e. that the variables
are all sinusoidal in time, or constant, we may decompose ψ0 into a steady and a
sinusoidal component. Thus, we write ψ0 = ψs

0 + ψu
0 where ψs

0 is time-independent,

and
∫ 2π

0
ψu

0 dt = 0. Equation (4.4a) and the time average of (4.4c) lead to

Lψu
0 = 0,

1

r
J

(
Lψs

0

h
, hψs

0

)
= L2ψs

0 , (4.5)

As expected, w0 =
√

2Rsh
−1 sin t does not satisfy the no-slip boundary condition,

and it is necessary to consider a boundary layer of thickness α−1 near the wall.
We introduce the boundary-layer coordinate r = 1 − η/α and seek solutions in the



152 J. H. Siggers and S. L. Waters

boundary layer of the form w = αW0 + W1 + · · · , ψ = α−1Ψ0 + α−2Ψ1 + · · · . At O(α3),
equations (2.7) and (2.9) give

∂W0

∂t
=

√
2Rs

h0

cos t +
∂2W0

∂η2
,

∂3Ψ0

∂t∂η2
+

1

h0

W0

∂W0

∂η
sin θ =

∂4Ψ0

∂η4
, (4.6)

where h0 = 1 + δ cos θ . The solution for W0 satisfying the no-slip boundary condition
W0 = 0 at η =0 and matching with the core solution (equation (4.3)) is

W0 =

√
2Rs

h0

(
sin t + e−η/

√
2 sin

(
η√
2

− t

))
. (4.7)

Similarly, the solution for Ψ0 satisfying the no-slip boundary conditions Ψ0 =
∂Ψ0/∂η = 0 at η =0 and matching with the core solution is

Ψ0 =
Rs sin θ√

2h3
0

(
− 1

8
exp

(
−

√
2η

) [
2 + sin(

√
2η − 2t) + cos(

√
2η − 2t)

]

− exp

(
− η√

2

)[
sin

(
η√
2

)
+ cos

(
η√
2

)
+ sin

(
η√
2

− 2t

)
+ cos

(
η√
2

− 2t

)]

+
5

4
√

2
exp(−η) [sin(η − 2t) + cos(η − 2t)] + 5

4
− 1

4

√
2η

+ 1
8
(9 − 5

√
2)(cos(2t) − sin(2t))

)
. (4.8)

Hence we see that as η → ∞, not only does Ψ0 not tend to zero but neither does ∂Ψ0/∂η.
Matching with the core solution gives ψs

0 = 0 and ∂ψs
0/∂r = Rs sin θ/4h3

0 at r =1.
Writing ψs

0 = Rsχ , the governing equation for the steady secondary flow in the core
becomes

1

r
J

(
Lχ

h
, hχ

)
=

1

Rs

L2χ, (4.9)

subject to the boundary conditions

χ = 0,
∂χ

∂r
=

sin θ

4h3
0

at r = 1, (4.10)

from which it becomes clear that Rs is the secondary streaming Reynolds number.
We also define the rescaled axial vorticity, ω = − Lχ .

To determine how large α must be for the asymptotic approximation to the
boundary-layer flow to be accurate, we compare the numerical results from § 4.2 with
the leading-order parts of the analytical solutions for the boundary-layer flow, given
in (4.7) and (4.8). The leading-order component of the streamfunction in the boundary
layer is α−1Ψ0 (see equation (4.3)), and inspection of Ψ0 (equation (4.8)) reveals that,
along the line θ = π/2, Ψ0/Rs is independent of α, Rs and δ (since h0 = 1 when θ = π/2).
Thus we expect that, for a given value of η and at θ = π/2, and as α → ∞, αR−1

s ψ will
converge to a finite value that is independent of Rs and δ. Plots showing comparisons
between the asymptotic and numerical values of the time average of αR−1

s ψ are
shown in figure 12(a). The solid line corresponds to the asymptotic solution, while the
remaining curves correspond to the numerical solutions for α = 20, 60, and δ = 0, 0.3.
For both α = 20 and α = 60, the curves for δ = 0 and δ = 0.3 are almost identical,
indicating that for large α, the boundary-layer streamfunction is almost independent
of δ as expected, and as α increases, the numerical solutions approach the asymptotic
solution.
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Figure 12. Plots showing a comparison of the numerical results with the analytical solution
in the asymptotic limit as α → ∞. In all the figures, the numerical results are shown by:
dotted curve, α =20, δ = 0; dashed curves, α = 60, δ = 0, dash-dot curves: α = 20, δ = 0.3;
dash-dot-dot-dot curves, α = 60, δ = 0.3; all numerical results are for Rs = 10. (a) Time-
average of αR−1

s ψ along the line θ = π/2. The solid curve shows the asymptotic solution.
(b) Time-average of α−1R−1

s ξ along the line θ = π/2. The curves show the relative difference
between the numerical and asymptotic values, which is defined to be (numerical value −
asymptotic value)/(maximum asymptotic value − minimum asymptotic value). (c) and (d),

axial velocity α−1R
−1/2
s h0w at t = 0 along the lines θ = 0 and θ = π, respectively. The curves

show the relative difference between the numerical and asymptotic values, defined to be
(numerical value − asymptotic value)/(maximum asymptotic value), since they were almost
indistinguishable on a graph of numerical and asymptotic values.

In a similar way, for θ = π/2 and fixed η, we expect α−1R−1
s ξ to converge to a

finite value that is independent of Rs and δ; plots of the relative difference between
the time-average of the numerical solution and the asymptotic solution are shown in
figure 12(b). The numerical solutions stay remarkably close to the asymptotic solution
well into the interior of the pipe (the variation of ξ in the radial direction along the
line θ = π/2 is shown in figure 9 for α =20, Rs = 10 and δ =0, 0.3).

Finally, as α → ∞, α−1R−1/2
s h0w converges to a finite value that is independent

of Rs , δ and θ . The relative difference between the numerical and asymptotic values
of this quantity at t = 0 are plotted in figures 12(c) and 12(d ) for θ = 0 and θ = π,
respectively (the variation of w in the radial direction along the line θ =0 is shown
in figure 9 for α = 20, Rs =10 and δ = 0, 0.3). Again, the numerical solutions stay
remarkably close to the asymptotic solution well into the pipe interior. The results
suggest that, even at α = 20, the solution is fairly close to the boundary-layer solution
in the limit α → ∞ for η � 1 (and indeed for larger η also).

4.3.1. Analytical solution for steady secondary core flow (small Rs and δ)

When Rs � 1 and δ � 1, it is possible to find a series solution to (4.9) which must
be solved subject to (4.10). We write χ =

∑∞
m= 0 Rm

s χm, where χm =
∑∞

n= 0 δnχmn. The



154 J. H. Siggers and S. L. Waters

χ00 ω00 χ01 ω01 χ02 ω02

χ10 ω10 χ11 ω11 χ12 ω12

(a)

I

(0.01) (0.2)

(b)

(0.01) (0.5)

(c)

(0.01) (0.5)

(d)

(1 × 10–5) (5 × 10–4)

(e)

(4 × 10–5) (0.002)

( f )

(2 × 10–8) (2 × 10–6)

O I O I O I O I O I O

I O I O I O I O I O I O

Figure 13. Streamlines and axial vorticity contours showing the components of the core flow
for α � 1. The solutions shown in (a), (d ) and (f ) were also found by Lyne (1971) and Stuart
(1966).

boundary conditions at r = 1 become χm = 0 ∀m together with

∂χ0

∂r
= 1

4
sin θ − 3

8
δ sin 2θ + 3

8
(sin θ + sin 3θ) δ2 − 5

16
(2 sin 2θ + sin 4θ) δ3+O(δ4), (4.11)

and ∂χm/∂r = 0 for m > 0.
Equation (4.8) at O(R−1

s ) gives L2χ0 = 0. The first three terms in the series solution
are

χ00 = − r

8
(1 − r2) sin θ, χ01 =

3r2

16
(1 − r2) sin 2θ, (4.12)

χ02 = − 3r

256
(11 + 5r2)(1 − r2) sin θ − 3r3

16
(1 − r2) sin 3θ. (4.13)

These solutions are shown in figure 13(a–c) together with the corresponding axial
vorticity contours, where we have expanded ω =

∑
m,n�0 Rmδnωmn. At leading order,

the secondary flow consists of two vortices, with flow from the outside of the bend of
the pipe (θ = 0) to the inside (θ = π), and back around the walls. The corresponding
vorticity contours indicate that the vorticity is constant along horizontal lines. As δ

increases, the primary effect, due to the χ01 term, is to move the vortex centre towards
the inside of the pipe wall, and the secondary effect due to the χ02 term is to slow
the flow (by flattening the streamfunction) near the centre and speed it up round the
edges.

Equation (4.8) at O(1) gives L2χ1 = r−1J(h−1Lχ0, hχ0), and expanding in powers
of δ, we find that

χ10 = − r2

210 × 3
(1 − r2)2 sin 2θ, (4.14)

χ11 =
r

210 × 32
(4 − 7r2)(1 − r2)2 sin θ +

77r3

212 × 5 × 3
(1 − r2)2 sin 3θ. (4.15)

Contours of these streamfunctions together with the corresponding axial vorticity are
shown in figures 13(d ) and 13(e). Finally, at O(Rs), we have

L2χ2 =
1

r
J

(
Lχ0

h
, hχ1

)
+

1

r
J

(
Lχ1

h
, hχ0

)
, (4.16)
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Figure 14. (a) Streamfunction contours and (b) axial vorticity contours for δ = 0, δ = 0.1 and
δ = 0.3, respectively. All results are for Rs = 10.
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Figure 15. (a) Streamfunction contours and (b) axial vorticity contours for Rs = 100,
Rs =400, Rs = 1000 and Rs = 2000, respectively. Solid curves, δ = 0; dotted curves, δ = 0.1.

and we find

χ20 = − r

216 × 5 × 32
(2 − 7r2 + 4r4)(1 − r2)2 sin θ − r3

215 × 5 × 32
(1 − r2)2 sin 3θ. (4.17)

Figure 13(f ) shows contours of χ20 and the corresponding axial vorticity. As Rs

increases (for δ =0), the leading-order effect, due to χ10, is to move the centre of the
vortex towards the outside of the pipe bend (figure 13d ).

4.3.2. Numerical solution for steady secondary core flow (intermediate
values of Rs and δ)

At larger values of Rs and δ, we must solve (4.9) subject to (4.10) numerically. We
add a fictitious time variable, and solve the system using the implicit Euler method
and the spatial discretization described in § 4.1. Figure 14 shows the effect of increasing
δ whilst keeping Rs = 10. As δ increases, the vortices move towards the inside of the
pipe bend, which agrees with the behaviour of χ0 predicted analytically in § 4.3.1.
In figure 15, streamlines and axial vorticity contours are shown for Rs = 100, 400,
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1000 and 2000 and two different values of δ. Comparing the solutions for Rs =10 and
Rs = 100, we see that the centre of the vortex at Rs = 100 is further towards the outside
of the pipe bend, in agreement with the asymptotic predictions of § 4.3.1. The effect
is still noticeable at Rs =400, but as Rs increases further, the vortex centre moves
back towards θ = π/2, and by Rs = 2000, the streamlines are almost symmetrical in
the vertical axis, as reported by van Meerveld & Waters (2001). The axial vorticity
contours become progressively more skewed, and for Rs � 1000, boundary layers
begin to form around the walls and across the horizontal axis.

As δ increases, for smaller values of Rs the centre of the vortex moves towards the
inside of the bend, as predicted in § 4.3.1. At Rs = 2000, the streamlines for δ = 0 and
δ =0.1 are virtually identical. However, close inspection of the vorticity boundary
layers reveals that the curves for δ = 0.1 lie slightly further away from the wall
than those for δ = 0, and thus the boundary layer is slightly thicker for the larger-δ
case. The numerical results also indicate that, for fixed values of δ, the width of the
boundary layer scales as R−1/2

s (van Meerveld & Waters 2001).
We remark again that we have ruled our asymmetric solutions by our assumptions,

and since it was difficult to resolve numerical solutions to the full problem when α

and Rs are both large, we are not able to determine the nature of the bifurcation
diagram at large values of α. The possibility exists therefore that the symmetric flows
presented in figure 14 for large Rs may be unstable to asymmetric perturbations.
However, further analysis to determine the stability of these flows is beyond the scope
of the paper.

5. Oscillatory pressure gradient
Our focus here is to determine the effect of adding a steady component of the

axial pressure gradient on the types of flow found in § 4.2; in particular, we seek to
quantify the effect of the steady driving pressure gradient component on the spatially
asymmetric solutions found in that section.

We start by considering the flow corresponding to D = 0, α = 10 and Rs =50. We
consider δ = 0, 0.1 and 0.3; from figure 4, we see that the branch 1 solution (periodic
and symmetric) is stable at these parameter values. Streamlines and contour plots
of the axial velocity and axial vorticity during the first half-period are shown in
figure 16. The spatially symmetric solutions also possess a temporal symmetry in
which the solution is translated forward by half a period and the sign of the axial
velocity is reversed. If we now increase the Dean number, this temporal symmetry
is lost, as expected. Plots corresponding to D = 500 and 5000 are given in figures 17
and 18, respectively. For large values of D, we see that the solution adopts many
characteristics of steady flows at high Dean numbers (Siggers & Waters 2005). In
particular, a boundary layer forms at r = 1, which can be seen in the plots of axial
velocity, axial vorticity and, to a lesser extent, in the streamfunction. Moreover,
the axial velocity contours become approximately vertical and the axial vorticity is
almost constant in the core. Additional transient vortices in the streamfunction are
also evident at large Dean numbers; see for example the streamfunction at t = 5π/3
in figure 18.

Next we consider the asymmetric solution with D = 0, δ = 0, α =10 and Rs = 120,
shown in figure 7. As D is increased from zero, the solutions automatically loses its
temporal symmetry as expected, and then, at a critical value of D, which lies between
425 and 430 (for these values of δ, α and Rs), the solution regains spatial symmetry
via a pitchfork bifurcation (see figure 19).
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Figure 16. Contour plots of solutions found with D =0, Rs = 50, α = 10 and δ = 0, 0.1 and
0.3, shown at t = 0, π/3, 2π/3. Solid curves, δ = 0; dotted curves, δ = 0.1; dashed curves, δ = 0.3.

Siggers & Waters (2005) showed that when the flow is driven by a steady pressure
gradient, there are always stable steady solutions that are symmetric in θ =0, π. When
a small time-dependent component is added to the pressure gradient, these solutions
will correspond to the branch 1 solutions shown in figure 3. Thus, in general, we expect
for sufficiently large D, branch 2 and 3 solutions will converge onto these (symmetric)
solutions, since the effect of the time-dependent component of the pressure gradient
becomes relatively small.

6. Effect of curvature on the wall shear stress
In this section, we quantify the effect of pipe curvature on the shear stress

distribution, given by (2.10). For simplicity, we restrict attention to branch 1 solutions.
We wish to vary the curvature, δ, whilst keeping the dimensional pressure gradient
(characterized by P0, K and T ), the fluid properties (characterized by ρ and ν),
and the pipe radius (characterized by a) fixed. By writing D = 4

√
2δRe where

Re =P0a
3/(4ρν2), and Rs = δR̃s where R̃s = K2T 3/(νρ2), it becomes clear that the

desired parameter study is achieved by fixing the parameters Re, R̃s and α at constant
values whilst varying δ (note that D and Rs will vary accordingly). This parameter
study is more physiologically relevant than that obtained by fixing D, Rs and α, and
will be discussed in the remainder of this section.
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Figure 17. Contour plots of solutions found with D = 500, Rs = 50, α = 10 and δ = 0, 0.1 and
0.3, each shown at six equally spaced time points over the period. Solid curves, δ = 0; dotted
curves, δ = 0.1; dashed curves, δ = 0.3. The shading indicates regions where the solution with
δ = 0 is positive.
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Figure 18. Contour plots of solutions found with D = 5000, Rs =50, α = 10 and δ = 0, 0.1
and 0.3, each shown at six equally spaced time points over the period. Solid curves, δ = 0;
dotted curves, δ = 0.1; dashed curves, δ =0.3.
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Figure 19. Contour plots of solutions found with Rs = 120, α = 10 and δ = 0, shown at six
equally spaced time points over the period. Solid curves, D =425; dashed curves, D =430.
Shaded areas indicate regions where the solutions with D = 425 are positive.
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Figure 20. Graphs showing how the WSS properties vary as δ changes. (a) α = 1, R̃s =80;
(b) α = 1, R̃s = 2400, both with Re = 0. Solid curves, numerical solutions for t = 0; dashed
curves, numerical solutions for t = π/2; circles and triangles denote analytical solutions found
in § 3 for t =0 and t = π/2, respectively.

Initially, we consider the sinusoidal case (Re = 0), and in figure 20 present some
representative WSS plots. Recall that, at least in the asymptotic case presented in § 3,
the time-averaged axial WSS attains its maximum and minimum values at θ =0 and
θ = π (see (3.17)), whilst the azimuthal WSS attains its maximum close to θ = π/2
(see (3.18)). Motivated by this we present the axial WSS at θ =0 and θ = π and the
azimuthal WSS at θ = π/2 in figure 20 at t = 0 and t = π/2. Figures 20(a) and 20(b)
show a comparison between the numerical results and the asymptotic estimates that

were found in § 3, for α = 1 and R̃s = 80 and 2400, respectively. The numerical and
asymptotic values remain very close as δ increases away from zero, even up to δ =0.3.
There is a significant change in both the axial and azimuthal WSS at t =0 as δ varies
from 0 to 0.3.

We also consider the variation of the WSS distribution with δ for the case where
the flow is driven by an oscillatory pressure gradient with Re �= 0. In figure 21, we
present the maximum and minimum values of the axial WSS at the outer and inner

walls and the azimuthal WSS at θ = π/2. For Re = 5, α = 1 and R̃s = 80 (figure 21a),
we also see that there is excellent agreement between the analytical and numerical
results as δ varies between 0 and 0.3. However, in figure 21(b), which corresponds to
α = 2, we see that the agreement between the analytical and numerical results is less
satisfactory; we remark that this rapid decrease in agreement is expected since the
analytical results are proportional to α3. We again remark that there is significant
variation in the WSS distribution with δ.



162 J. H. Siggers and S. L. Waters

4

6

8

10

12

14

16

5

10

15

20

0.2

0.4

0.6

0.8

1.0

1.2

1.4

–20

0

20

40

–40

–20

0

20

40

60

2

4

6

8

10

12

14

0.1 0.2 0.3 0.40

Max and min axial WSS at θ = 0

0.1 0.2 0.3 0.40

Max and min axial WSS at θ = π

0.1 0.2 0.3 0.40

Max and min azimuthal WSS at θ = π/2

0.1 0.2 0.3 0.40

δ

Max and min axial WSS at θ = 0

0.1 0.2 0.3 0.40

δ

Max and min axial WSS at θ = π

0.1 0.2 0.3 0.40

δ

Max and min azimuthal WSS at θ = π/2

(a)

(b)

Figure 21. Effect of varying δ on the WSS of solutions driven by an oscillatory pressure
gradient. (a) Re = 5, α = 1, R̃s =80, (b) Re = 5, α =2, R̃s = 80. Solid curves, numerical results
for maximum value during cycle; dashed curves, numerical results for minimum during
cycle; circles and triangles denote analytical solutions from § 3 for maximum and minimum,
respectively.

7. Conclusions
In this paper, we considered flows driven by oscillatory pressure gradients in

pipes with finite curvature. The flow behaviour is governed by four dimensionless
parameters: the curvature, δ; the Dean number, D; the Womersley number, α; and
the secondary streaming Reynolds number, Rs . Analytical solutions were obtained
when each of the curvature, the driving pressure gradient and α were small, and
also in the case when α � 1 and Rs and δ are small. A pseudospectral code was
used to obtain solutions at finite values of the governing parameters; a key feature
of our numerical scheme was that it enabled us to seek solutions that are spatially
asymmetric in the pipe centreplane.

For flows driven by sinusoidal pressure gradients with α = 10, we identified three
distinct classes of stable solution: periodic and symmetric (branch 1); periodic and
asymmetric (branch 2); and asymmetric solutions that are not 2π periodic (branch 3).
When the branch 1 solutions lose stability they undergo a transition to either branch
2 or branch 3 solutions, depending on the value of δ. For δ less than a certain critical
value, branch 1 solutions will undergo a transition to branch 2 solutions; however,
above the critical value of δ, the branch 1 solutions will undergo a transition to branch
3 solutions. Thus, the qualitative solution structure is sensitive to the value of δ. As
D increases from zero, the temporal symmetry of solutions is automatically broken.
However, it does not initially affect the spatial symmetry of solutions, although for
higher values of D, some branch 2 solutions were found to regain spatial symmetry.
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Figure 22. Dimensional axial wall shear stress, showing the dependence on curvature. The
remaining parameter values are chosen to be representative of those in the major coronary
arteries branching off the aortic arch. In this figure a = 10−3 m, T = 1/(2π) s, ν = 4×10−6 m2 s−1,
Re = 50 and R̃s = 3.2 × 105/π3 (hence α =

√
π/2), (with δ =1/4 this gives typical physiological

values). Solid curves, δ = 0.01; dotted curves, δ = 0.1; dashed curves: δ =0.3. Axial WSS at
(a) the outer wall as a function of time, (b) the inner wall as a function of time, and (c) at
t =0 as a function of θ .

Zabielski & Mestel (1998a, b) considered a related problem of helically symmetric
flows in helical pipes wound around the Cartesian z-axis. The equations were shown
to admit the following spatio-temporal symmetry

w(r̃, φ, t + π) = −w(r̃ , −φ, t), ψ(r̃, φ, t + π) = −ψ(r̃ , −φ, t), (7.1)

where r̃ and φ are polar coordinates in the plane of the pipe cross-section. For flows
driven by an oscillatory pressure gradient, Zabielski & Mestel found that solutions
breaking this symmetry exist for a finite range of amplitudes of the pressure gradient.
This is in contrast to our study, where the term ‘symmetric’ refers to solutions that
are spatially symmetric in the pipe centreplane at all times, i.e.

w(r, θ, t) = w(r, −θ, t), ψ(r, θ, t) = −ψ(r, −θ, t). (7.2)

(The helical geometry of Zabielski & Mestel rules out the analogous symmetry in
their work.)

Our study was motivated by blood flow in arteries, and, in particular, how the WSS
distribution depends on the vessel curvature. Suppose we consider major arteries
branching off the aorta with radius approximately a = 1 × 10−3 m. If we assume
the period of the heart beat, 2πT , is 1 s, and the kinematic viscosity of blood is
ν = 4 × 10−6 m2 s−1 (Pedley 1980; Sugawara et al. 1989) then we obtain a Womersley
number α =

√
π/2. Taking the mean blood velocity to be 0.1 m s−1 we obtain an

estimate for the Reynolds number, Re, of approximately 50. We assume that the
amplitude of the sinusoidal component of the pressure gradient, K , is equal to the

steady component of the pressure gradient, P0, which gives an estimate for R̃s of
3.2×105/π3. Using these parameter estimates, the dimensional axial WSS at the outer
and inner walls as a function of time is shown in figures 22(a) and 22(b). Additionally,
we plot the dimensional axial WSS at t = 0 in figure 22(c). In general the WSS does not
vary monotonically with δ: this non-monotonic behaviour emphasises the importance
of incorporating the effects of finite curvature into the model.

Finally, the existence of asymmetric solutions is potentially physiologically
significant, as the resulting circumferential distribution of WSS will reflect the
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asymmetry (plaques are observed to develop asymmetrically). At the parameter values
considered here, we found only a symmetric solution, although we cannot rule out
the existence of additional solution branches.
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